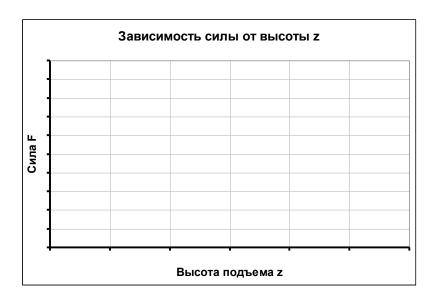
Задание 1. Потери энергии. Листы ответов.

1.1 Количество выделившейся теплоты равно


Q =

1.2 Количество выделившейся теплоты равно

Q =

1.3.1 Зависимость силы F , прикладываемой к цепочке, от высоты z поднятой части цепочки (формула и график)

$$F(z)=$$

1.3.2 Количество выделившейся теплоты равно

Q =

Задание 2. Взаимодействия цилиндрических магнитов (Листы ответов)

Часть 1. Характеристики магнита.

1.1 Масса магнита (формула, число)

m =

1.2 Магнитный момент магнита (формула, число)

 $p_m =$

1.3 Сила тока намагничения, текущего по боковой поверхности магнита (формула, число)

 $I_m =$

Часть 2. Магнитное поле магнита.

2.1 Формулы для осевой и радиальной компонент вектора индукции поля точечного заряда

$$B_z^{(0)}(z,r)=$$

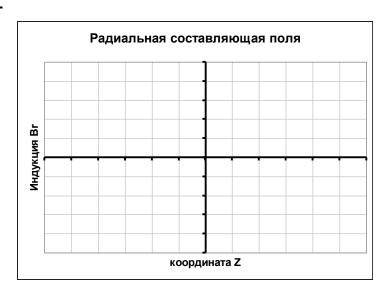
$$B_r^{(0)}(z,r)=$$

2.2 Схематическая картина силовых линий магнитного поля, создаваемого, цилиндрическим магнитом.

2.3 Осевая компонента индукции поля магнитного диполя

$$B_z(z,r)=$$

2.4 Схематический график зависимости $B_z(z_0, r)$ от координаты r:


2.5 Значения индукции поля на оси магнита

$$B_z(z) =$$

2.6 Радиальная компонента магнитного поля:

$$B_r(z,r) =$$

2.7 Схематический график зависимости $B_z(z, r_0)$ от координаты z

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

2.8 Максимальное значение функции	B_{τ}	z, r_0	равно (
-----------------------------------	------------	----------	---------

$$B_{r,\max} =$$

Достигается при

$$z = b =$$

Часть 3. Притяжение и отталкивание.

3.1 Зависимость силы взаимодействия между магнитами от расстояния *z* между ними:

$$F =$$

3.2 Расстояние между магнитами в состоянии равновесия

случай a) L=

случай б) L=

- 3.3 Какой эксперимент может реализован на практике
- 3.4 Численное значение равновесного расстояния

$$L =$$

Часть 4. Магнитная вязкость – токи Фуко.

4.1 Сила тока, протекающего по выделенному кольцу Δz

$$\Delta I =$$

4.2 Мощность теплоты, выделяющейся в трубке при движении магнита

$$P =$$

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

4.3 Сила вязкого магнитного трения, действующая на движущийся магнит
F =
4.4 Скорость установившегося падения магнита в трубке
V =
4.5 Численное значение скорости падения магнита
T 7

Задание 3. Брызги шампанского! (Листы ответов) Часть 1. Предварительная.

1.1 В системе ГЛА универсальная газовая постоянная равна (число и размерность)

R =	
12 D average CIIA Hagragiyyag Cayry ranya (yiyaya y ranyariyagiy)	
1.2 В системе ГЛА постоянная Генри равна (число и размерность)	
$k_m =$	
1.3 Масса углекислого газа	_
m =	
Часть 2. Открываем бутылку!	
2.1 Формулы для расчета давления в бутылке Промежуточные:	
Окончательная	
P =	
Таблица 1. Зависимость давления от температуры	
$t^{\circ}C$	$P_{_{CYM}}$,
0	атм
5	
10	
15	

20

25

30

График зависимости P(t)

2.2 Какой объем шампанского останется в бутылке после выскакивания пробки

$$V_{ocm} =$$