

Республиканская физическая олимпиада 2024 года

(Заключительный этап)

Теоретический тур

Решения задач 9 класс (для жюри)

Уважаемые члены жюри!

Задачи, предложенные школьникам для решения на олимпиаде, не стандартные и достаточно сложные. Предложенные здесь варианты путей решений не являются единственно возможными. Участники олимпиады могут предложить свои способы решения. Если эти способы приводят к физически правильным ответам И обоснованы, то задача (или ее отдельные пункты) должны оцениваться максимальными баллами.

Не забывайте, что Вы должны оценивать не только конечные ответы, но и отдельные правильные шаги в ходе решения!

He жалейте баллов (если, конечно, есть за что!) для наших замечательных школьников!

Задание 1. Как Уильям Томсон стал лордом Кельвином (Решение)

Задача 1.

1.1 Расчет характеристик приведенной цепи традиционен и основан на законах параллельного и последовательного соединения проводников. Результаты расчетов приведены в Таблице 1.

Таблица 1.

Схема	Сопротивление	Силы токов	
I_2 I_3 R R R R R		$I_3' = I_3 \frac{R_{x3}}{2R} =$ $= \frac{1}{2} I_3$	
$ \begin{array}{c c} I_1 & I_2 & I_3 \\ \hline I'_2 & R & R \\ \hline 2R & 2R & R \end{array} $ R_{x2}	$R_{x2} = R + \frac{2R \cdot R_{x3}}{2R + R_{x3}}$ $= \frac{5}{3}R$	$=I_2' = I_2 \frac{R_{x2}}{2R} = \frac{5}{4}I_3$	$I_1 = I_2 + I_2' = $ $= \frac{11}{4}I_3$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{x1} = R + \frac{2R \cdot R_{x2}}{2R + R_{x2}} = \frac{21}{11}R$	$I_1' = I_1 \frac{R_{x1}}{2R} = \frac{21}{8} I_3$	$I_0 = I_1 + I_1' = $ $= \frac{43}{8}I_3$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{x0} = R + \frac{2R \cdot R_{x1}}{2R + R_{x1}} = \frac{85}{43}R$		

1.2 Сила тока I_0 определяется по закону Ома (сопротивление всей цепи есть R_{x0}):

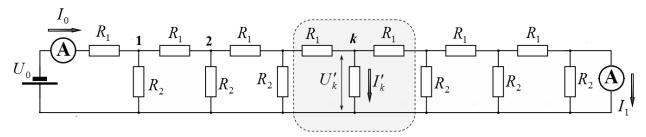
$$I_0 = \frac{U_0}{R_{x0}} = \frac{43}{85} \frac{U_0}{R} \,. \tag{1}$$

В Таблице получена связь между токами, из которой следует
$$I_0 = \frac{43}{8}I_3 \quad \Rightarrow \quad I_3 = \frac{8}{43}I_0 = \frac{8}{85}\frac{U_0}{R}. \tag{2}$$

1.3 Требуемые отношения сил токов равны

$$\frac{I_1}{I_0} = \frac{11}{4} \frac{8}{43} = \frac{22}{43} \approx 0,51$$
 $\frac{I_2}{I_1} = \frac{3}{2} \frac{4}{11} = \frac{6}{11} \approx 0,55$
(3)

Задача 2.



2.1 В условии исходные данные заданы с двумя значащими цифрами, поэтому с такой же точностью следует проводить расчет цепи. Сопротивления R_2 в тысячу раз меньше сопротивлений R_1 . Поэтому силы токов через резисторы R_2 более чем в 100 раз меньше, чем силы токов через резисторы R_1 . Следовательно, с приемлемой погрешностью при расчете сил токов I_0 и I_1 токами через резисторы R_2 можно пренебречь. Поэтому эти силы токов равны

$$I_0 \approx I_1 = \frac{U_0}{7R_1} = 1,0 \ A \,. \tag{4}$$
 2.2 Разность сил токов $\Delta I = \left(I_0 - I_1\right)$ равна сумме сил токов «утечки» через резисторы R_2 .

2.2 Разность сил токов $\Delta I = (I_0 - I_1)$ равна сумме сил токов «утечки» через резисторы R_2 . Выберем произвольный резистор, номер которого обозначим k (k = 1,2,...7). В рамках использованного приближения, напряжение на этом резисторе равно

$$U_{k}' = U_{0} - I_{0}R_{1}k = \frac{U_{0}}{7}(7 - k).$$
(5)

Поэтому сила тока через этот резистор равна

$$I_k' = \frac{U_k'}{R_2} = \frac{U_0}{7R_2} (7 - k). \tag{6}$$

Осталось просуммировать эти силы токов:

$$\Delta I = (I_0 - I_1) = \sum_{k=1}^{7} I_k' = \sum_{k=1}^{7} \frac{U_0}{7R_2} (7 - k)$$
(7)

Элементарный расчет приводит к результату

$$\Delta I = \frac{U_0}{3R_2} = 0.33 \text{ mA} \tag{8}$$

Задача 3.

3.1 Расчет сопротивления бесконечной цепочки достаточно известен. Обозначим это сопротивление R_x . Если от бесконечной цепочки мысленно отключить первое звено, то сопротивление оставшейся цепочки также будет равно R_x . Это позволяет построить эквивалентную R_x Теоретический тур. Вариант 1.

9 класс. Решения задач. Бланк для жюри.

схему цепочки. Запишем теперь выражение для сопротивления всей цепочки

$$R_x = R_1 + \frac{R_x R_2}{R_x + R_2} \,. \tag{9}$$

Это выражение следует рассматривать как квадратное уравнение для нахождения неизвестного сопротивления $R_{_{\rm x}}$:

$$R_{\rm r}^2 - R_{\rm r} R_1 - R_1 R_2 = 0. (10)$$

Положительный корень этого уравнения определяется по формуле (отрицательное сопротивления физического смысла не имеет):

$$R_{x} = \frac{R_{1} + \sqrt{R_{1}^{2} + 4R_{1}R_{2}}}{2} \,. \tag{11}$$

При $R_1 = R_0$, $R_2 = 2R_0$ сопротивление цепочки оказывается равным:

$$R_x = 2R_0. (12)$$

3.2 Рассмотрим произвольное звено бесконечной цепочки, схема которого и направления сил токов показаны на рисунке. Для этих сил токов можно записать два равенства

 $I_{k-1} = I_k + I_k'$

 $I_{\iota}R_{\iota\iota}=I'_{\iota}R_{2}$

$$(13) \qquad \begin{matrix} R_1 \\ R_1 \\ I'_k \end{matrix} \qquad \begin{matrix} R_2 \\ R_z \end{matrix} \qquad \begin{matrix} R_x \\ R_x \end{matrix}$$

Из этих выражений следует, что

$$I_{k} = \frac{I_{k-1}}{1 + \frac{R_{x}}{R_{2}}} \tag{13}$$

Это рекуррентное соотношение определяет геометрическую прогрессию для последовательности значений сил токов. В явном виде можно записать формулу для геометрической прогрессии

$$I_k = \gamma^k I_0. (14)$$

где

$$\gamma = \left(1 + \frac{R_x}{R_2}\right)^{-1}, \quad I_0 = \frac{U_0}{R_x}.$$
 (15)

3.3 Подстановка параметров цепи в эти формулы дает $\gamma = \frac{1}{2}, \quad I_0 = \frac{U_0}{2R_0}$. Тогда значения всех

сил токов описываются формулой

$$I_{k} = \frac{U_{0}}{2R_{0}} \cdot 2^{-k} . {16}$$

Иными словами, после каждого звена сила тока уменьшается в два раза.

3.4 При условии $R_2 >> R_1$ в формуле (11) надо оставить только самое большое слагаемое, которое определяет сопротивление всей цепи

$$R_{x} = \frac{R_{1} + \sqrt{R_{1}^{2} + 4R_{1}R_{2}}}{2} \approx \sqrt{R_{1}R_{2}}.$$
 (17)

3.5 В этом случае значения сил токов также образуют геометрическую прогрессию Знаменатель этой прогрессии и сила тока в цепи равны

$$\gamma = \left(1 + \frac{R_x}{R_2}\right)^{-1} = \left(1 + \sqrt{\frac{R_1}{R_2}}\right)^{-1} \approx \left(1 - \sqrt{\frac{R_1}{R_2}}\right).$$

$$I_k = \frac{U_0}{\sqrt{R_1 R_2}}$$
(18)

Тогда явный вид формулы для значений сил токов записывается в виде:

$$I_{k} = \frac{U_{0}}{\sqrt{R_{1}R_{2}}} \left(1 - \sqrt{\frac{R_{1}}{R_{2}}} \right)^{k}. \tag{19}$$

Задача 4

4.1 Сопротивление медной жилы длиной Δl рассчитывается по формуле

$$R_1 = \rho_1 \frac{4\Delta l}{\pi d_0^2} \ . \tag{20}$$

Подставив численные значения, получим (все величины в системе СИ):

$$R_1 = 1.7 \cdot 10^{-8} \frac{4 \cdot 10^4}{\pi \cdot (2 \cdot 10^{-2})^2} = 0.54 \ Om \ . \tag{21}$$

Сопротивление всего кабеля

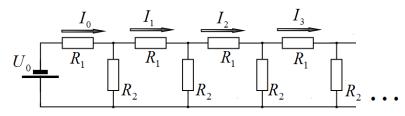
$$R_{1\Sigma} = R_1 \frac{L}{\Delta l} = 0.54 \frac{5000}{10} = 270 \,Om.$$
 (22)

4.2 Ток через изоляцию протекает перпендикулярно оси кабеля, поэтому ее сопротивление равно

$$R_2 = \rho_2 \frac{h}{\pi \left(d + \frac{h}{2}\right) \Delta l} = 1, 1 \cdot 10^5 \, OM \qquad R_{2\Sigma} = \frac{\Delta l}{L} = 2, 2 \cdot 10^2 \, OM.$$
 (23)

Толщина изоляции сравнима с диаметром жилы, поэтому площадь поперечного сечения увеличивается по мере удаления от жилы. Поэтому в качестве разумного приближения взято сечении на половине слоя изоляции.

4.3 Не смотря на то, что кабель представляет непрерывную систему, можно разбить ее на отдельные куски некоторой длины Δl (например 10 км). В этом Теоретический тур. Вариант 1.



9 класс. Решения задач. Бланк для жюри.

случае эквивалентной схемой является бесконечная цепочка, рассмотренная в задаче 3.

4.4 Для расчета отношения сил токов на выходе и входе следует воспользоваться формулой (19)

$$I_1 = I_0 \left(1 - \sqrt{\frac{R_1}{R_2}} \right)^N. \tag{24}$$

Здесь $N = \frac{L}{\Lambda l}$. Выразим отношение сопротивлений, входящих в эту формулу

$$\sqrt{\frac{R_1}{R_2}} = \sqrt{\frac{\rho_1}{\rho_2} \frac{4\Delta l}{\pi d_0^2} \cdot \frac{\pi \left(d_0 + \frac{h}{2}\right) \Delta l}{h}} = \alpha \Delta l. \tag{25}$$

Введенная здесь постоянная величина, равна

$$\alpha = \sqrt{\frac{\rho_1}{\rho_2} \frac{4\left(d_0 + \frac{h}{2}\right)}{d_0^2 h}} = 5.0 \cdot 10^{-7} \,\text{M}^{-1} \,. \tag{26}$$

Теперь можно переписать формулу (24) в виде

$$\frac{I_1}{I_0} = \left(1 - \sqrt{\frac{R_1}{R_2}}\right)^N = \left(1 - \alpha \Delta l\right)^{\frac{L}{\Delta l}}.$$
 (27)

Можно убедиться в том, что при $\alpha \Delta l << 1$ результаты расчетов практически не зависят от искусственно выбранного значения Δl .

Так при $\Delta l = 10 \kappa M$ получаем

$$\frac{I_1}{I_0} = (1 - \alpha \Delta l)^{\frac{L}{\Delta l}} = (1 - 5.0 \cdot 10^{-7} \cdot 10^4)^{500} = 0.082$$
 (28)

т.е. сила тока уменьшилась примерно в 20 раз. Понятно, что не утечка тока являлась основной причиной неработоспособности трансатлантического кабеля!

<u>Дополнение (от участников олимпиады не требуется).</u> Строго говоря, в формуле (27) необходимо устремить $\Delta l \to 0$. В этом случае

$$\frac{I_1}{I_0} = (1 - \alpha \Delta l)^{\frac{L}{\Delta l}} = \exp(-\alpha L) = 0.082,$$

что совпадает с ранее полученным результатом.

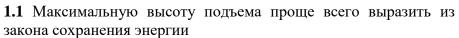
Также можно указать смысл постоянной α : обратная ей величина $\frac{1}{\alpha} \approx 2000 \, \text{км}$ есть расстояние на котором сила тока в кабеле убывает в $e \approx 2,7$ раз.

Задание 2. Вытекание (решение).

Часть 1. Бросок

Шарик равноускоренно ускорением движется свободного падения \vec{g} , направленным вертикально вниз. Если высота подъема шарика равна h, то введенная координата шарика равна

$$z = h_0 - h . (1)$$



$$\frac{mv_0^2}{2} = mgh_0 \tag{2}$$

Из этой формулы получаем:

$$h_0 = \frac{v_0^2}{2g}. (3)$$

1.2 Проекции ускорения и начальной скорости на введенную ось д равны

$$a_z = +g$$

$$v_{0z} = -v_0$$
(4)

1.3 Зависимость скорости шарика от его координаты легко выразить из закона сохранения энергии

$$\frac{mv_0^2}{2} = mgh_0 = \frac{mv^2}{2} + mgh. ag{5}$$

Из которого следует (с учетом знака проекции), что
$$v_z(z) = -\sqrt{2g(h_0 - h)} = -\sqrt{2gz} \ . \tag{6}$$

1.4 Из формулы (5) выразим

$$mgh_0 = \frac{mv^2}{2} + mgh \quad \Rightarrow \quad h = h_0 - \frac{v^2}{2g} \tag{7}$$

Так как движение шарика является равноускоренным, то зависимость скорости от времени описывается функцией

$$v = v_0 - gt. (8)$$

Поэтому зависимость координаты
$$z(t)$$
 имеет вид
$$z(t) = h_0 - h = \frac{v^2}{2g} = \frac{(v_0 - gt)^2}{2g} \,. \tag{9}$$

<u>Примечание.</u> Все формулы этой части могут быть получены чисто «кинематически», используя законы равноускоренного движения. При таком подходе проще всего использовать известную формулу

$$\Delta x = \frac{v^2 - v_0^2}{2a}.$$

1.5 График функции (9) показан на рисунке

Кривая является параболой.

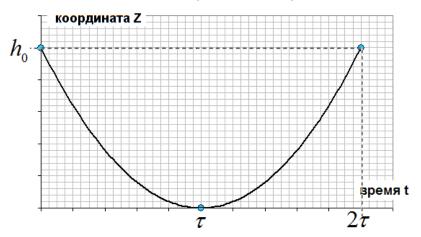
На графике обозначено

$$h_0 = \frac{v_0^2}{2g}$$
 - начальная и конечная

координата шарика;

 $au = rac{{{v_0}}}{g}$ - время подъема шарика.

Зависимость координаты от времени



1.6 Значения показателей степеней могут легко быть найдены, используя метод размерностей

$$\alpha = \frac{1}{2}, \quad \beta = -\frac{1}{2}. \tag{10}$$

То есть формула для искомого времени имеет вид

$$\tau_{0,5} = C\sqrt{\frac{h_0}{g}} \ . \tag{11}$$

1.7 Для расчета значения коэффициента C подставим выражение (11) для времени и формулу $v_0 = \sqrt{2gh_0}$ для начальной скорости в уравнение (9):

$$z = \frac{\left(v_0 - gt\right)^2}{2g} \quad \Rightarrow \quad 2g\frac{h_0}{2} = \left(\sqrt{2gh_0} - gC\sqrt{\frac{h_0}{g}}\right)^2 \quad \Rightarrow \quad 1 = \left(\sqrt{2} - C\right)^2 \tag{12}$$

Из этого уравнения находим два возможных значения коэффициента C:

$$C_{1,2} = \sqrt{2} \pm 1 \tag{13}$$

Два корня имеют физический смысл: шарик находится на половине высоты дважды — при подъеме и при спуске. По смыслу задачи необходимо выбрать меньший корень, поэтому

$$C = \sqrt{2} - 1 \tag{14}$$

<u>Примечание.</u> Результаты могут быть получены и с помощью непосредственного решения уравнения (9) без перехода к безразмерным параметрам.

Часть 2. Дырявый сосуд

2.1 Рассмотрим процесс вытекания за малый промежуток времени Δt . Пусть за это время уровень воды в сосуде изменился от z до $z - \Delta z$. Поэтому потенциальная энергия воды в сосуде уменьшилась на величину

$$\Delta U = \Delta mgz \tag{15}$$

где Δm масса волы. вытекшей ИЗ сосуда рассматриваемый промежуток времени. Такая же масса воды протекла через отверстие, унося кинетическую энергию

$$\Delta E_k = \frac{\Delta m v_1^2}{2} \,. \tag{16}$$

Так как площадь поперечного сечения сосуда значительно больше диаметра отверстия, то кинетической энергией воды,

находящейся в сосуде, можно пренебречь. На основании закона сохранения механической энергии можно записать

$$\frac{\Delta m v_1^2}{2} = \Delta m g z \,. \tag{17}$$

Откуда следует, что скорость вытекания воды из отверстия равна

$$v_1 = \sqrt{2gz} \ . \tag{18}$$

 $v_1 = \sqrt{2gz} \; .$ **2.2** Изменение объема воды в сосуде равно объему вытекшей воды, поэтому

$$SV\Delta t = s_1 v_1 \Delta t \,, \tag{19}$$

где S, s_1 площади поперечного сечения сосуда и отверстия, соответственно. Из формулы (19) следует, что

$$V = \frac{s_1}{S} v_1. \tag{20}$$

Учитывая, что отношение площадей равно квадрату отношения диаметров, используя формулу (18) получим зависимость скорости опускания от высоты

$$V(z) = \left(\frac{d}{D}\right)^2 v_1 = \eta^2 \sqrt{2gz} . \tag{21}$$

С учетом направления оси z, запишем искомую зависимость проекции этой скорости от высоты

$$V_z(z) = -\sqrt{2(\eta^4 g)z} . ag{21}$$

2.3 Функция (21) полностью аналогична зависимости (6), полученной для равноускоренного движения шарика в поле тяжести земли, если заменить величину д на модифицированное значение $\eta^4 g$. Кроме того, для этих зависимостей одинаковы начальные условия (при t=0 $z = h_0$), поэтому законы движения также полностью аналогичны! Следовательно, далее можно использовать все формулы, полученные для движения шарика (не забывая в них изменить значение ускорения).

Так ускорение уровня воды равно

$$a_z = +\eta^4 g . (22)$$

Теоретический тур. Вариант 1.

9 класс. Решения задач. Бланк для жюри.

2.4 С помощью найденной аналогии на основании формулы (9) запишем закон движение границы

$$z(t) = \frac{(V_0 - \eta^4 g t)^2}{2\eta^4 g}.$$
 (23)

Начальная скорость движения определяется формулой (21), поэтому закон движения уровня воды имеет вид

$$z(t) = \frac{\left(\sqrt{2\eta^4 g h_0} - \eta^4 g t\right)^2}{2\eta^4 g}.$$
 (23)

2.5 Время «полувытекания» найдем с помощью формулы (11) и найденным значением коэффициента (14)

$$\tau_{0,5} = \left(\sqrt{2} - 1\right)\sqrt{\frac{h_0}{\eta^4 g}} \ . \tag{24}$$

2.6 подстановка численных значений приводит к результату

$$\tau_{0,5} = \left(\sqrt{2} - 1\right)\sqrt{\frac{h_0}{\eta^4 g}} = \left(\sqrt{2} - 1\right) \cdot 20^2 \sqrt{\frac{0,20}{10}} \approx 23c.$$
 (25)

Задание 3. Теплокровный сферический кот (Решение)

Часть 1. Постоянное тепловыделение.

Основная идея расчета установившейся температуры — выполнение уравнения теплового баланса, когда мощность выделяющейся теплоты равна мощности теплоты. уходящей в окружающую среду

$$W = q. (1)$$

В рассматриваемой в части 1 модели это уравнение имеет вид

$$wV = \beta S(t - t_0) \implies w \frac{4}{3} \pi R^3 = \beta \cdot 4\pi R^2 (t - t_0). \tag{2}$$

Это уравнение перепишем в виде

$$t - t_0 = \frac{wR}{\beta} \,. \tag{3}$$

1.1 Из уравнения (3) следует, что разность между установившейся температурой и температурой окружающей среды пропорциональная радиусу тела. Следовательно, температура котенка будет меньше. Запишем уравнение (1) для кота и для котенка

$$t_{1} - t_{0} = \frac{wR_{0}}{\beta}$$

$$t_{2} - t_{0} = \frac{wR_{0}}{2\beta}$$
(4)

Из этих уравнений следует, что

$$\frac{t_2 - t_0}{t_1 - t_0} = \frac{1}{2} \quad \Rightarrow \quad t_2 = t_0 + \frac{t_1 - t_0}{2} \,. \tag{5}$$

Подстановка численных значений дает следующий результат:

$$t_2 = t_0 + \frac{t_1 - t_0}{2} = 28^{\circ}. ag{6}$$

1.2.1 Запишем уравнения баланса (3) для голого и для одетого котенка

$$t_{2} - t_{0} = \frac{wR_{0}}{2\beta_{0}}$$

$$t_{3} - t_{0} = \frac{wR_{0}}{2\frac{\beta_{0}}{2}} = \frac{wR_{0}}{\beta_{0}}$$
(7)

Из этих уравнений следует, что температура одетого котенка станет равной температуре голого кота

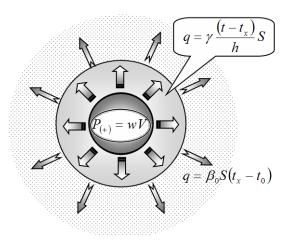
$$t_3 = t_1 = 36^{\circ}$$
 (8)

1.2.2 В данном случае можно записать «двойного» уравнения баланса: мощность выделяющейся теплоты равна мощности теплоты, проходящей через слой одежды, и равна мощности теплоты уходящей в окружающую среду.

$$wV = \gamma \frac{t - t_x}{h} S = \beta (t_x - t_0) S. \tag{9}$$

Здесь t_x - температура внешней поверхности одежды. Из второй части равенства (9) выразим значение t_x

$$\gamma \frac{t - t_x}{h} S = \beta (t_x - t_0) S \quad \Rightarrow \quad t_x = \frac{at + t_0}{a + 1}. \tag{10}$$



где обозначено $a = \frac{\gamma}{h\beta_0}$. Теперь поток в окружающую среду можно представить в виде:

$$\beta_0(t_x - t_0)S = \beta \left(\frac{at + t_0}{a + 1} - t_0\right)S = \beta \frac{a}{a + 1}S(t - t_0)$$
(11)

Таким образом, мощность потока теплоты от тела кота в окружающую среду пропорционален разности их температур. Полученное выражение формально совпадает с формулой (2), приведенной в условии задачи.

«Новый» коэффициент пропорциональности, как следует из формулы (11), равен

$$\alpha_1 = \beta S \frac{a}{a+1} = \alpha_0 \frac{\gamma}{\gamma + h\beta_0}.$$
 (12)

Из этого выражения следует, что при увеличении толщины слоя одежды коэффициент теплопередачи уменьшается, поэтому согласно уравнению (3) температура тела увеличивается.

Отметим, что при больших значениях теплопроводности коэффициент теплопередачи остается неизменным и равным α_0 . При малой теплопроводности коэффициент теплопередачи полностью определяется теплопроводностью одежды: $\alpha_1 \approx \frac{\gamma}{h} S$.

Часть 2. «Живая» молель

Основной идеей решения этой части также является уравнение теплового баланса, которое в данной модели имеет вид

$$A(t - t_{\min})(t_{\max} - t) = \alpha_0(t - t_0), \tag{13}$$

которое является квадратным уравнением, поэтому при известных коэффициентах может быть решено аналитически.

2.1 Как оговорено в условии. при оптимальной температуре мощность тепловыделения максимальна. Зависимость $W(t) = A(t-t_{\min})(t_{\max}-t)$ является квадратичной. Значения нулей этой функции очевидны: это t_{\min} и t_{\max} . как известно, вершина параболы находится на середине отрезка между корнями. Следовательно, оптимальная температура кота равна

$$t_{opt} = \frac{1}{2} (t_{\min} + t_{\max}) = 40^{\circ}.$$
 (14)

2.2 В уравнении теплового баланса (13) входят две неизвестных константы – коэффициенты пропорциональности A и α_0 . Но это уравнение можно переписать следующим образом

$$\overline{A}(t - t_{\min})(t_{\max} - t) = (t - t_0) \tag{15}$$

В этом уравнении одна неизвестная постоянная величина $\overline{A} = \frac{A}{\alpha_0}$, которая может быть

найдена из заданного значения $t_0^*=20^\circ$. Поэтому коэффициента теплоотдачи и служит нормировочной постоянной. Поэтому

$$C = \alpha_0; \quad \overline{W} = \overline{A}(t - t_{\min})(t_{\max} - t); \quad \overline{q} = t - t_0.$$
 (16)

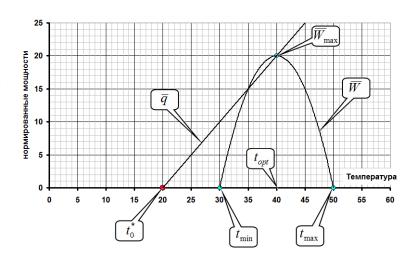
Нормировочная постоянная C (она же α_0) равна мощности теплоты, уходящей в окружающую среду, пир разности температур поверхности и воздуха равной 1°. Отметим, что нормированные мощности измеряются в градусах Цельсия!

В нормированных функциях мощностей имеется только один параметр \overline{A} , который рассчитывается по дополнительному условию: при $t_0^*=20^\circ$ температура кота оптимальна t_{opt} . Тогда из уравнения (15) находим:

$$\overline{A} = \frac{t_{opt} - t_0^*}{\left(t_{opt} - t_{\min}\right)\left(t_{\max} - t_{opt}\right)} = 0.20 \frac{1}{^{\circ}C}.$$
(17)

2.3 Построение начнем с примитивного графика функции $\overline{q}(t) = t - t_0$. График — прямая линия с коэффициентом наклона равным единице, и пересекающая ось температур в точке t_0 .

График функции
$$\overline{W}(t) = \overline{A}(t-t_{\min})(t_{\max}-t);$$
 является параболой, ветви которой направлены вниз. Нули и положение вершины этой функции были «найдены» ранее. Максимальное значение функции



 $\overline{W}(t)$ можно рассчитать, подставив значение $t=t_{opt}$: $\overline{W}(t)=\overline{A}(t_{opt}-t_{\min})(t_{\max}-t_{opt})=20^{\circ}$.

Заметим, что это значение можно определить и по функции $\overline{q}(t)$. Эта прямая проходит через вершину параболы. Точка пересечения прямой с осью температур отстоит от температуры вершины параболы на 20° . Так как наклон прямой равен 1, то значение мощности в точке пересечения с параболой тоже равно 20° .

Так как авторы заданий любезно разрешили проводить промежуточные расчеты, то запишем уравнение теплового баланса «в числах».

$$\overline{A}(t-t_{\min})(t_{\max}-t)=(t-t_0) \implies \frac{1}{5}(t-30)(50-t)=t-t_0$$

Здесь мы записали значение $\overline{A} = 0.20 = \frac{1}{5}$. После приведения подобных членов, получим

$$t^2 - 75t + (150 - 5t_0) = 0 (18)$$

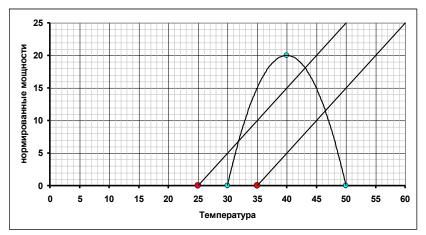
2.4 Для расчета установившейся температуры, надо решить квадратное уравнение (18) при нужном значении температуры воздуха. Так при $t_0 = 35^\circ$ это уравнение имеет два корня

$$t_{(1)} = 28.5^{\circ}$$

$$t_{(2)} = 46.5^{\circ}$$

Первый корень надо отбросить, так как он выходит за пределы диапазона жизнедеятельности.

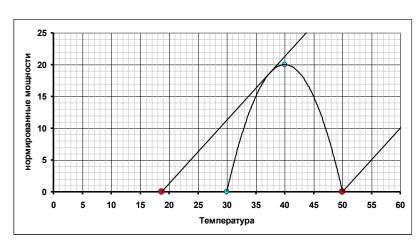
При $t_0 = 25^\circ$ корнями уравнения (18) являются $t_{(1)} = 32^\circ$ $t_{(2)} = 43^\circ$



Чтобы понять смысл двух корней дадим графическую иллюстрацию этих решений. На графике «видны» корни уравнения как точки пересечения прямых с параболой. Но эти корни являются точками равновесия, которое может быть, как устойчивым, так и неустойчивым! Легко показать, что только больший корень $t_{(2)}$ (на ниспадающей ветви параболы) является устойчивым. Действительно, при температуре большей $t_{(2)}$ мощность потерь превысит мощность тепловыделения, поэтому кот начнет остывать. Если температура станет меньше значения $t_{(2)}$ ситуация обратная: мощность тепловыделения превышает мощность потерь, поэтому температура будет повышаться. Аналогичные рассуждения приводят к выводы, что меньший корень неустойчив, поэтому это значение температуры реализовываться не будет. Таким образом, установившиеся температуры равны:

при
$$t_0 = 35^\circ$$
: $t = 46,5^\circ$.
при $t_0 = 25^\circ$: $t = 43^\circ$. (19)

2.5 Чтобы найти допустимый диапазон температур воздуха, мысленно построим на графике мощностей тепловыделения и теплопотерь несколько прямых графиков $\overline{q}(t)$ при различных значениях температуры воздуха t_0 . Кот сможет жить при температуре воздуха t_0 , если соответствующая прямая пресекается с параболой $\overline{W}(t)$. На рисунке показаны «крайние»



прямые. Не сложно заметить, что максимальная температура воздуха равна

$$t_{0\text{max}} = t_{\text{max}} = 50^{\circ} \,.$$
 (20)

Минимальной температуре воздуха соответствует прямая, которая является касательной к параболе. Теперь заметим, что в этом случае уравнение баланса (18) имеет единственный корень, при этом дискриминант уравнения обращается в нуль! Записываем значения дискриминанта и приравниваем его к нулю

$$D = \left(\frac{75}{2}\right)^2 - \left(1500 - 5t_0\right) = 0\tag{21}$$

Из этого условия находим минимальную температуру воздуха, при которой кот выживает:

$$t_{0\min} \approx 19^{\circ}. \tag{22}$$

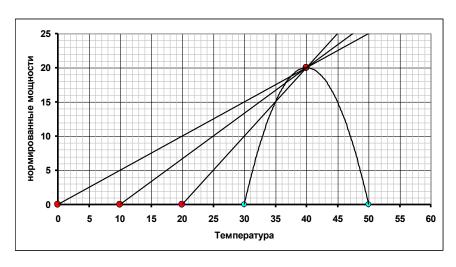
2.6 Уравнение теплового баланса с изменяющимся коэффициентом теплоотдачи в нормированном виде имеет вид

$$\overline{A}(t - t_{\min})(t_{\max} - t) = \frac{\alpha}{\alpha_0}(t - t_0).$$
(23)

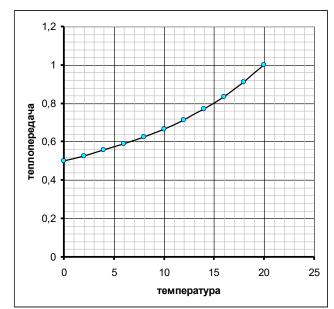
Необходимо, чтобы при любом значении t_0 один из корней этого уравнения был равен $t_{opt}=40^\circ$. Вспомним, что при этой температуре, мощность тепловыделения максимальна ($W_{\rm max}=20^\circ$). Таким образом, из уравнения (23) получаем, что необходимая зависимость имеет вид

$$\frac{\alpha}{\alpha_0} = \frac{\overline{W}_{\text{max}}}{t_{opt} - t_0} = \frac{20}{40 - t_0} \,. \tag{24}$$

Изменение коэффициента теплопередачи приводит к изменению наклона прямой, являющейся графиком зависимости $\overline{q}(t)$. Все эти прямые должна проходить через вершину параболы и пересекать ось температур в точке t_0 (см. рисунок)



- **2.7** График зависимости $\frac{\alpha(t_0)}{\alpha_0}$ показан на рисунке. Понятно, что при понижении температуры теплоотдачу (следовательно, и коэффициент теплопередачи) надо уменьшать.
- **2.8** Для строго определения нужного коэффициента надо построить касательную к параболе, проходящую через начало координат. однако для оценки можно принять, что прямая отдачи проходит через вершину параболы. В этом случае, искомое значение можно найти по формуле (24) при $t_0=0^\circ$.



Поэтому

$$\frac{\alpha}{\alpha_0} = 0.5 \tag{25}$$

т.е. коэффициент теплоотдачи надо уменьшить в два раза.